17 research outputs found

    Zika Virus Disrupts Phospho-TBK1 Localization and Mitosis in Human Neuroepithelial Stem Cells and Radial Glia

    Get PDF
    Graphical Abstract Highlights d Derivation of human neocortical and spinal cord neuroepithelial stem (NES) cells d Zika virus (ZIKV) infects NES cells and radial glia, impairing mitosis and survival d ZIKV induces mitochondrial sequestration of centrosomal phospho-TBK1 d Nucleoside analogs inhibit ZIKV replication, protecting NES cells from cell death In Brief Onorati et al. establish neuroepithelial stem (NES) cells as a model for studying human neurodevelopment and ZIKV-induced microcephaly. Together with analyses in human brain slices and microcephalic human fetal tissue, they find that ZIKV predominantly infects NES and radial glial cells, reveal a pivotal role for pTBK1, and find that nucleoside analogs inhibit ZIKV replication, protecting NES cells from cell death

    Neural stem cells direct axon guidance via their radial fiber scaffold

    Get PDF
    Neural stem cells directly or indirectly generate all neurons and macroglial cells and guide migrating neurons by using a palisade-like scaffold made of their radial fibers. Here, we describe an unexpected role for the radial fiber scaffold in directing corticospinal and other axons at the junction between the striatum and globus pallidus. The maintenance of this scaffold, and consequently axon pathfinding, is dependent on the expression of an atypical RHO-GTPase, RND3/RHOE, together with its binding partner ARHGAP35/P190A, a RHO GTPase-activating protein, in the radial glia-like neural stem cells within the ventricular zone of the medial ganglionic eminence. This role is independent of RND3 and ARHGAP35 expression in corticospinal neurons, where they regulate dendritic spine formation, axon elongation, and pontine midline crossing in a FEZF2-dependent manner. The prevalence of neural stem cell scaffolds and their expression of RND3 and ARHGAP35 suggests that these observations might be broadly relevant for axon guidance and neural circuit formation.This work was supported by Labex LifeSenses grants ANR-10-LABX-65 and ANR-11-IDEX-0004-02 to A.C.; MINECO SAF2013-49176-C2-1-R and Programa Santander-FUSP to I.P.-R. and J.T.; NIH grants R01 MH115939, NS105640, and NS089662 to A.J.K.; and NIH grants MH103339, MH106934, MH110926, and MH109904 to N.S. Additional support was provided by the Kavli Foundation and the Simons Foundation.Peer reviewe

    Integrative functional genomic analysis of human brain development and neuropsychiatric risks

    Get PDF
    INTRODUCTION The brain is responsible for cognition, behavior, and much of what makes us uniquely human. The development of the brain is a highly complex process, and this process is reliant on precise regulation of molecular and cellular events grounded in the spatiotemporal regulation of the transcriptome. Disruption of this regulation can lead to neuropsychiatric disorders. RATIONALE The regulatory, epigenomic, and transcriptomic features of the human brain have not been comprehensively compiled across time, regions, or cell types. Understanding the etiology of neuropsychiatric disorders requires knowledge not just of endpoint differences between healthy and diseased brains but also of the developmental and cellular contexts in which these differences arise. Moreover, an emerging body of research indicates that many aspects of the development and physiology of the human brain are not well recapitulated in model organisms, and therefore it is necessary that neuropsychiatric disorders be understood in the broader context of the developing and adult human brain. RESULTS Here we describe the generation and analysis of a variety of genomic data modalities at the tissue and single-cell levels, including transcriptome, DNA methylation, and histone modifications across multiple brain regions ranging in age from embryonic development through adulthood. We observed a widespread transcriptomic transition beginning during late fetal development and consisting of sharply decreased regional differences. This reduction coincided with increases in the transcriptional signatures of mature neurons and the expression of genes associated with dendrite development, synapse development, and neuronal activity, all of which were temporally synchronous across neocortical areas, as well as myelination and oligodendrocytes, which were asynchronous. Moreover, genes including MEF2C, SATB2, and TCF4, with genetic associations to multiple brain-related traits and disorders, converged in a small number of modules exhibiting spatial or spatiotemporal specificity. CONCLUSION We generated and applied our dataset to document transcriptomic and epigenetic changes across human development and then related those changes to major neuropsychiatric disorders. These data allowed us to identify genes, cell types, gene coexpression modules, and spatiotemporal loci where disease risk might converge, demonstrating the utility of the dataset and providing new insights into human development and disease

    R5 HIV productively infects Langerhans cells, and infection levels are regulated by compound CCR5 polymorphisms

    No full text
    Langerhans cells (LCs) are suspected to be initial targets for HIV after sexual exposure (by becoming infected or by capturing virus). Here, productive R5 HIV infection of LC ex vivo and LC-mediated transmission of virus to CD4(+) T cells were both found to depend on CCR5. By contrast, infection of monocyte-derived dendritic cells and transfer of infection from monocyte-derived dendritic cells to CD4(+) T cells were mediated by CCR5-dependent as well as DC-specific ICAM-3-grabbing nonintegrin-dependent pathways. Furthermore, in 62 healthy individuals, R5 HIV infection levels in LCs ex vivo were associated with CCR5 genotype. Specifically, genotyping for ORFΔ32 revealed that LCs isolated from ORFΔ32/wt individuals were significantly less susceptible to HIV when compared with LCs isolated from ORFwt/wt individuals (P = 0.016). Strikingly, further genetic analyses of the A-2459G CCR5 promoter polymorphism in ORFΔ32/wt heterozygous individuals revealed that LCs isolated from -2459A/G + ORFΔ32/wt individuals were markedly less susceptible to HIV than were LCs from -2459A/A + ORFΔ32/wt individuals (P = 0.012). Interestingly, these genetic susceptibility data in LCs parallel those of genetic susceptibility studies performed in cohorts of HIV-infected individuals. Thus, we suggest that CCR5-mediated infection of LCs, and not capture of virus by LCs, provides a biologic basis for understanding certain aspects of host genetic susceptibility to initial HIV infection

    Developmental dynamics of voltage-gated sodium channel isoform expression in the human and mouse brain.

    No full text
    BackgroundGenetic variants in the voltage-gated sodium channels SCN1A, SCN2A, SCN3A, and SCN8A are leading causes of epilepsy, developmental delay, and autism spectrum disorder. The mRNA splicing patterns of all four genes vary across development in the rodent brain, including mutually exclusive copies of the fifth protein-coding exon detected in the neonate (5N) and adult (5A). A second pair of mutually exclusive exons is reported in SCN8A only (18N and 18A). We aimed to quantify the expression of individual exons in the developing human brain.MethodsRNA-seq data from 783 human brain samples across development were analyzed to estimate exon-level expression. Developmental changes in exon utilization were validated by assessing intron splicing. Exon expression was also estimated in RNA-seq data from 58 developing mouse neocortical samples.ResultsIn the mature human neocortex, exon 5A is consistently expressed at least 4-fold higher than exon 5N in all four genes. For SCN2A, SCN3A, and SCN8A, a brain-wide synchronized 5N to 5A transition occurs between 24 post-conceptual weeks (2nd trimester) and 6 years of age. In mice, the equivalent 5N to 5A transition begins at or before embryonic day 15.5. In SCN8A, over 90% of transcripts in the mature human cortex include exon 18A. Early in fetal development, most transcripts include 18N or skip both 18N and 18A, with a transition to 18A inclusion occurring from 13 post-conceptual weeks to 6 months of age. No other protein-coding exons showed comparably dynamic developmental trajectories.ConclusionsExon usage in SCN1A, SCN2A, SCN3A, and SCN8A changes dramatically during human brain development. These splice isoforms, which alter the biophysical properties of the encoded channels, may account for some of the observed phenotypic differences across development and between specific variants. Manipulation of the proportion of splicing isoforms at appropriate stages of development may act as a therapeutic strategy for specific mutations or even epilepsy in general

    Spatiotemporal transcriptomic divergence across human and macaque brain development

    No full text
    Human nervous system development is an intricate and protracted process that requires precise spatiotemporal transcriptional regulation. We generated tissue-level and single-cell transcriptomic data from up to 16 brain regions covering prenatal and postnatal rhesus macaque development. Integrative analysis with complementary human data revealed that global intraspecies (ontogenetic) and interspecies (phylogenetic) regional transcriptomic differences exhibit concerted cup-shaped patterns, with a late fetal-to-infancy (perinatal) convergence. Prenatal neocortical transcriptomic patterns revealed transient topographic gradients, whereas postnatal patterns largely reflected functional hierarchy. Genes exhibiting heterotopic and heterochronic divergence included those transiently enriched in the prenatal prefrontal cortex or linked to autism spectrum disorder and schizophrenia. Our findings shed light on transcriptomic programs underlying the evolution of human brain development and the pathogenesis of neuropsychiatric disorders.Also supported by BFU2017-86471-P (MINECO/FEDER, UE), U01 MH106874 grant, Howard Hughes International Early Career, 3P30AG021342-16S2 (H.Z.); Obra Social “La Caixa” and Secretaria d’Universitats i Recerca and CERCA Programme del Departament d’Economia i Coneixement de la Generalitat de Catalunya (GRC 2017 SGR 880) (T.M.-B.); a Formació de Personal Investigador fellowship from Generalitat de Catalunya (FI_B00122) (P.E.-C.); La Caixa Foundation (L.F.-P.); a Juan de la Cierva fellowship (FJCI-2016-29558) from MICINN (D.J.); and NIH grants MH109904 and MH106874, the Kavli Foundation, and the James S. McDonnell Foundation

    Zika Virus Disrupts Phospho-TBK1 Localization and Mitosis in Human Neuroepithelial Stem Cells and Radial Glia

    Get PDF
    The mechanisms underlying Zika virus (ZIKV)-related microcephaly and other neurodevelopment defects remain poorly understood. Here, we describe the derivation and characterization, including single-cell RNA-seq, of neocortical and spinal cord neuroepithelial stem (NES) cells to model early human neurodevelopment and ZIKV-related neuropathogenesis. By analyzing human NES cells, organotypic fetal brain slices, and a ZIKV-infected micrencephalic brain, we show that ZIKV infects both neocortical and spinal NES cells as well as their fetal homolog, radial glial cells (RGCs), causing disrupted mitoses, supernumerary centrosomes, structural disorganization, and cell death. ZIKV infection of NES cells and RGCs causes centrosomal depletion and mitochondrial sequestration of phospho-TBK1 during mitosis. We also found that nucleoside analogs inhibit ZIKV replication in NES cells, protecting them from ZIKV-induced pTBK1 relocalization and cell death. We established a model system of human neural stem cells to reveal cellular and molecular mechanisms underlying neurodevelopmental defects associated with ZIKV infection and its potential treatment
    corecore